Comparison of two Perturbed Initial and Boundary Conditions Ensemble Forecasting Systems applied to Mediterranean cyclones

Maria-del-Mar Vich* Romualdo Romero Victor Homar

Meteorology Group, Universitat de les Illes Balears, Palma de Mallorca, Spain

*(mar.vich@uib.es)

EGU General Assembly 2009

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	000000	00
Outline			

Universitat de les Illes Balears - Spain

Methodolog

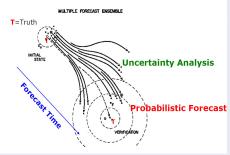
Comparison

Conclusions

Introduction

The western Mediterranean area

• Very cyclogenetic


• High impact weather phenomena

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction

Improve the numerical forecasts of cyclones

• Ensemble prediction system

- Perturbed initial and boundary conditions
- Multiphysics
- Multi-model

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction
000000

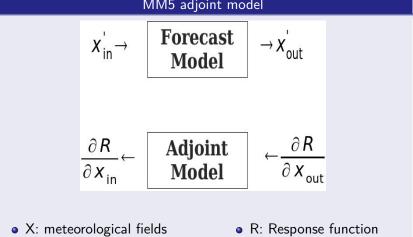
Methodolo

Comparison

Conclusions

Introduction

Mesoscale Atmospheric Model: MM5



- Nonhydrostatic dynamics
- High resolution
- Lateral boundary conditions
- Vertical coordinate: σ

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction 000000	Methodology 000	Comparison 000000	Conclusions 00
Introduction			
	MM5 adjo	int model	

Universitat de les Illes Balears - Spain

Introduction 0000●0	Methodology 000	Comparison 000000	Conclusions 00
Introduction			
	Verification: G	eneral framework	
Fc	Yes a	Vo Contingency table (2x2 problem) d	
Basic Descr	iptive Statistics	Performance Measures	
BR (Base Rate) Range: [0,1]	$= \frac{a+c}{a+b+c+d}$	POD = (Probability of Detection) = POFD = (Probability of False Detection)	$\frac{a}{a+c} \\ \frac{b}{b+d}$
		Range: [0,1] Perfect Sco	

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
00000			
Introduction			

Objectives

- Develop two EPSs based on pertubing the model initial and boundary conditions through a PV inversion algorithm
- Perturb along the three-dimensional PV structure
 - subjectively:

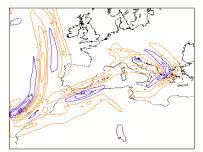
with the most intense values and gradients PV zones

• objectively:

with the MM5 adjoint model calculated sensitivity zones

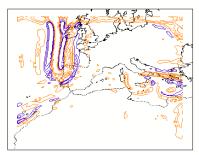
• Compare the performance of both EPSs for 24h accumulated precipitation field (30-54 h simulation time)

M. Vich (mar.vich@uib.es)


Introduction	Methodology	Comparison	Conclusions
000000	●○○	000000	00

Methodology

Build the two Ensemble Forecasts Systems


Introduce realistic perturbations randomly to the PV fields through a PV error climatology along the three-dimensional PV structure

Objectively:

MM5 adjoint model calculated sensitivity zones at 300 hPa

Subjectively:

The most intense values and gradients PV zones at 300 hPa

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0●0	000000	

Methodology

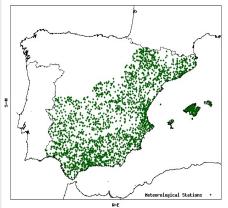
Simulations Characteristics

- Domain characteristics:
 - Resolution: 22.5 km
 - Center: 39.8 lat and 2.4 lon
 - Area: 120x120 grid

- Forecasting period is 54 h to simplify the posterior verification process (rainfall data is available at 24 h intervals starting each day at 06 UTC).
- The ensemble trial period corresponds to a collection of 19 MEDEX cyclones comprising 56 different simulation periods.

MEDEX: Mediterranean Experiment on Cyclones that produce High Impact Weather in the Mediterranean

M. Vich (mar.vich@uib.es)


Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	00●	000000	00
NA .1 1 1			

Methodology

Available Observations

The forecasted gridded field is interpolated over the rain gauges to compare with the observed data

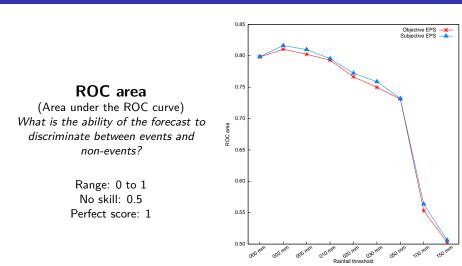
Rain gauge data is provided by AEMET (Spanish MetOffice)

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	

Comparison

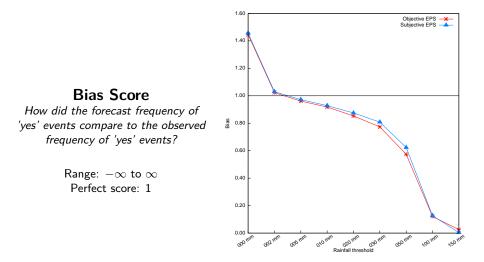

Probabilistic forecast

The set of deterministic forecast are assumed as independent realizations of the same underlying random process, so an estimate of the forecast probability of an event is provided by the fraction of the forecasts predicting the event among all forecast considered. Jolliffe and Stephenson, 2003

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	○●○○○○	00



Comparison

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	00●000	00
<u> </u>			

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	000●00	

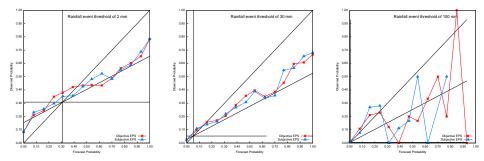
Comparison

0.65 Objective EPS Subjective EPS 0.60 0.55 0.50 0.45 0.40 **Brier Skill Score** 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 102 mm 000 mm 005 mm 010 mm .00 mm 050 m Rainfall threshold

Brier Skill Score

What is the relative skill of the probability forecast over that of climatology, in terms of predicting whether or not an event occurred?

> Range: $-\infty$ to 1 Perfect score: 1



Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	0000●0	00
Comparison			

Attribute Diagram

How well do the predicted probabilities of an event correspond to their observed frequencies?

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	00000●	00
Comparison			

Rank Histogram

How well does the ensemble spread of the forecast represent the true variability (uncertainty) of the observations?

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	000000	●0
Conclusions			

It's hard to verify extreme events and precipitation due to the small statistically significance, and the characteristics of the rainfall, like the spatial distribution. In spite of all this:

- Both ensembles have a good performance
- Subjective EPS performes slightly better than the Objective
- More tests will help to reaffirm this conclusion

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000	000000	

Conclusions

In the future:

- Further tests to reassure the better performance of the Subjective EPS over the Objective one.
- Design a Multiphysics Superensemble that includes correction of the systematic errors by regression of each Multiphysics ensemble member, developed in a previous study.
- Compare the two Perturbed Initial and Boundary conditions ensembles, the Superensemble and the Multiphysics ensemble

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain