

Maximum peak discharges for the 9-10 Oct 1990 flash-flood	Field estimation	Rain-gauge driven simulation		
St. Miquel river	260 m³/s (overflown)	356 m³/s (+37%)		
Almedrà river	366 m³/s	346 m³/s (-5.5%)		

· Can the multi-physical ensemble address the low forecast skill ?

· Explore the external-scale uncertainty of the QPFs owing to the physical parameterizations

 7-8 Oct 1990, 10-11 Nov 2001 (NCEP) and 3-4 Apr 2002 experiments are found to be suitable in order to introduce discharge predictions

• 8-9, 9-10 Oct 1990 and 10-11 Nov 2001 runs show a very deficient performance. A noticeable impact due to the uncertainties of the initial and boundary conditions are found

Can the multi-physical ensemble address the low forecast skill ?

· Explore the external-scale uncertainty of the QPFs owing to the physical parameterizations

• Can the multi-physical ensemble address the low forecast skill ?

· Explore the external-scale uncertainty of the QPFs owing to the physical parameterizations

• 7-8 Oct 1990, 10-11 Nov 2001 (NCEP) and 3-4 Apr 2002 experiments are found to be suitable in order to introduce discharge predictions

• 8-9, 9-10 Oct 1990 and 10-11 Nov 2001 runs show a very deficient performance. A noticeable impact due to the uncertainties of the initial and boundary conditions are found

Can the multi-physical ensemble address the low forecast skill ?

· Explore the external-scale uncertainty of the QPFs owing to the physical parameterizations

Results	Results: multi-physics ensemble of MM5 driven runoff simulations													
	_	7-8 Oct 1990		8-9 Oct 1990		9-10 Oct 1990		10-11 Nov 2001		10-11 Nov 2001 (NCEP)		3-4 Apr 2002		7
	MM5-4-5	0.75	-26.9	0.22	-64.0	0.05	-70.2	0.49	41.0	0.71	58.8	-2.75	193.1	
	MM5-5-5	-0.73	118.7	0.06	-70.6	-0.08	-75.3	-5.29	190.5	0.51	147.5	-0.89	129.3	
	MM5-6-5	0.31	-51.4	-0.02	-56.0	-0.14	-65.1	0.03	59.0	0.52	135.1	-2.82	187.4	
	MM5-7-5 (control)	0.28	55.4	-0.2	-98.7	-0.15	-91.6	-1.53	73.1	0.84	1.7	0.60	27.8	
	MM5-8-5	0.31	36.5	-0.17	-88.9	-0.13	-60.0	-0.46	43.8	0.74	-15.8	0.50	-42.4	
	MM5-4-5-8	0.36	-56.0	0.28	-35.8	0.17	-60.5	0.57	18.5	-1.44	-56.1	-2.38	183.0	
	MM5-5-5-8	0.63	-19.2	0.61	-4.7	0.28	-62.7	-0.55	48.2	-1.28	-56.3	-0.02	78.8	
	MM5-6-5-8	0.38	-26.9	0.53	-43.3	0.56	-5.2	0.71	-15.4	0.63	71.83	-2.88	188.8	
	MM5-7-5-8	0.68	-19.8	0.26	-47.8	0.34	-36.5	0.62	-51.8	0.48	169.0	0.67	13.6	
	MM5-8-5-8	0.21	46.9	0.1	-47.9	0.69	50.4	-7.61	172.6	0.52	142.0	0.66	-32.5	
	mean	0.68	5.7	0.26	-55.8	0.3	-47.7	-0.23	67.9	0.78	69.8	-0.14	92.7	

Conclusions and further remarks

• The high-resolution numerical weather control forecasts have reproduced some of the extreme precipitation events under study: feasibility to introduce discharge predictions despite the small-sized basin

• Some elements of the multi-physics ensemble outperform the control simulations and reduce biases at the Albufera outlet. The inclusion of an enhanced description for convection seems to benefit some episodes (e.g. 9-10 Oct 1990 convectively driven flash-flood)

• Initial and boundary conditions uncertainties are found to play an important role in the quality of the control QPFs for the 10-11 Nov 2001 event. These errors are smoothed by the use of the multi-physics ensemble

• The one-way coupling between the meteorological and hydrological models has been regarded as a complementary tool to evaluate the QPFs

• No precipitation assimilation technique has been used in the one-way coupling: future implementation of applications such as statistical downscaling or disaggregation techniques