RELACIÓN ENTRE LAS DISTRIBUCIONES ESPACIALES DE PRECIPITACIÓN EN LAS REGIONES MEDITERRÁNEAS ESPAÑOLAS Y LA OROGRAFÍA

RELATIONSHIP BETWEEN THE SPATIAL PRECIPITATION DISTRIBUTIONS OVER THE SPANISH MEDITERRANEAN REGIONS AND THE OROGRAPHY

M. G. Sotillo C. Ramis R. Romero S. Alonso V. Homar

Area de Estudio

Introducción

• La orografía juega un papel determinante en la configuración del clima regional en el Mediterraneo Español (ME).

• Mecanismos de ciclogénesis.

• Intensificación de precipitación de sistemas nubosos preexistentes.

• Estudios previos sobre distribución espacial de la precipitación en el ME (Romero, R. et al. 1999a y 1999b):

• Clasificación de la distribución espacial de precipitación diaria significativa.

 \Rightarrow 11 Patrones de Precipitación.

Datos: 1964-1993. Fuente: PRECLIME

 Clasificación de las situaciones sinópticas susceptibles de producir precipitación significativa ⇒ 19 Patrones Atmosféricos.

Datos 1984-1993. Fuente: ECMWF

• Relación estadística existente entre ambos tipos de patrones.

Objetivos

• Determinación de la influencia orográfica sobre la distribución espacial de la precipitación en el ME.

• Separación de la respectiva influencia sobre el campo de precipitación en dicha región de los siguientes factores:

- Orografía local (orografía Península Ibérica (PI)).
- Orografía no local (orografía externa a la PI).

• Determinación de la sinergia existente entre ambos factores.

Metodología

• Una serie de simulaciones numéricas (HIRLAM) fueron realizadas para situaciones sinópticas susceptibles de producir precipitación en el ME.

• Simulaciones realizadas a partir de un unico dia representativo de cada uno de los 19 patrones atmosféricos descritos por Romero et al, (1999b).

• El dia seleccionado como representativo de cada uno de los 19 patrones es aquel cuya situación sinóptica es más parecida al centroide del cluster al que pertenece.

• Para la selección de la situación representante de cada uno de los 19 patrones atmosféricos se empleo un análisis de correlación aplicado al geopotencial.

- Espacio euclideo 2D:
 - Eje x: Valores de correlación entre una situacion real y el centroide del cluster a 500 hPa.
 - Eje y: Idem pero a 925 hPa.
 - Operador distancia: $D_i = ((1-x_i)^2 + (1-y_i)^2)^{1/2}$

• La técnica de separación de factores de Stein & Alpert ha sido aplicada para determinar la respectiva influencia sobre el campo de precipitación de la orografía de la PI (local) y de la externa a la PI (no local) asi como de la sinergia existente entre ambas.

Características del Modelo

• Modelo hidroestático HIRLAM (versión 2.5).

•Formulación del modelo realizada para un grid del tipo Arakawa-C, con niveles verticales híbridos p- σ (ECMWF).

- Ecuaciones de pronóstico resueltas para:
 - Viento horizontal, temperatura, presión superficial y humedad.
 - Una ec. de pronóstico adicional para el agua de nube.
- Esquema de tiempo semi-implícito Euleriano.
- Parametrizaciones:
 - Transferencia radiativa (LW y SW) (Savijarvi, 1990)
 - Difusión vertical turbulenta de flujos de K, SH, y q (Louis, 1981)
 - Convección en la PBL (Kallen, 1996)

• El esquema de nubes combina condensación convectiva y estratiforme (Sundqviest, 1989).

Diseño de los Experimentos

- Dominio: 31.65°N-48.75°N y 18.00°W-12.30°E
- Resolución horizontal: $0.3^{\circ}x0.3^{\circ} \Rightarrow 30x30 \text{ Km}^2$
 - Grid de 102x58 (5916) ptos.
- Resolución vertical: 31 niveles híbridos
- Condiciones de Contorno: Datos de análisis no-inicializados ECMWF (0.75°x0.75°) cada 6 horas (00, 06, 12, 18 UTC)
- $\Delta t = 90$ s. De D 0000 UTC a D+1 0600 UTC (T+30h)

Dominio y orografía usados en los experimentos

Experimentos

	Orografía PI	Orografía externa PI
C S *	✓	✓
NOS*	8	8
IPOS*	✓	8
NIPOS*	8	¥

* Sim. Completa (CS), Sim. sin orografía (NOS), Sim. con orografía PI (IPOS), Sim. con orografía externa a la PI (NIPOS).

Separación de Factores (Stein&Alpert)

SIMULACIONES

- Completa (CS)
- Sin orografía (NOS)
- Con orografía PI (IPOS)
- Con orografía externa PI (NIPOS)

EFECTOS

- E. no o. = NOS
- E.o. local = IPOS NOS
- E. o. no-local = NIPOS NOS
- Sinergia = CS (NIPOS+IPOS) + NOS

Efecto orográfico total TOE = CS - NOS = LOE + NLOE + SYE

Figure1.- Atmospheric pattern 1: a) Geopotential field at 925 hPa (continuous line) and at 500 hPa (dashed line), contour intervals are 10 and 20 gpm respectively; b) Total simulated precipitation from 06 UTC to 06 UTC the next day (contour interval is 5 mm, starting at 5 mm); and c) total orographic effect (contours in mm as indicated in scale, areas with |CS-NOS|<5 mm are not shaded).

Figure 2.- Atmospheric pattern 2: a), b), and c) as in Figure 1; d) Local orographic effect (contours in mm as indicated in scale, areas with |IPOS-NOS|<5 mm are not shaded); e) non-local orographic effect (contours in mm as indicated in scale, areas with |NIPOS-NOS|<5 mm are not shaded); and f) synergistic effect (contours in mm as indicated in scale, areas with |CS-(IPOS+NIPOS)+NOS|<5 mm are not shaded).

(a)

Figure 3.- Atmospheric pattern 3: a), b), c), d), e) and f) as in Figure 2

(a)

(b)

(c)

(**d**)

Figure 4.- Atmospheric pattern 4: a), b), c), d), e) and f) as in Figure 2

Conclusiones I

• La orografía se muestra como un factor decisivo en la distribución espacial de precipitación sobre el ME.

• La compleja configuración orografica existente en el ME favorece el aumento de precipitación en las tierras más elevadas y expuestas al flujo, asi como una reducción de esta en los alrededores mas bajos y resguardados.

• Para la mayoria de los escenarios atmosféricos analizados, y principalmente sobre los sistemas montañosos, la precipitación orográficamente intensificada representa la casi totalidad de la precipitación simulada.

Conclusiones II

•Contribuciones de la orografía local y no local asi como de su interacción muestran una clara dependencia con la situación meteorológica.

• Situaciones 'Atlánticas' (Masas de aire húmedo de procedencia Atlántica)

•Orografía local único factor orográfico significativo.

• Obteniendose valores de correlación entre el efecto orográfico total y local superiores a 0.9.

• Situaciones 'Mediterraneas' (Flujos del Este a niveles bajos sobre el ME)

• Además del efecto orográfico local, tanto la orografía no local como la interacción entre ambas orografias tienen un efecto significativo sobre la distribución de precipitación en el ME.

Conclusiones III

•La acción remota del Atlas es un factor supresor de precipitación determinante en la región meridional del ME.

• El Efecto del Atlas sobre la precipitación en el ME se hace mas notorio en aquellas situaciones con flujo a niveles altos del Sur-SurOeste. Estas situaciones van acompañadas de la formacion de bajas en superficie a sotavento del Atlas, sobre la costa de Argelia.

• Dicha modificación del flujo a niveles bajos por parte del Atlas produce una redistribución de las zonas de convergencia/divergencia y consecuentemente de la precipitación sobre el ME.