Medicanes in HadGEM3 N512 climate simulations

M.Tous⁽¹⁾, G. Zappa⁽²⁾, R. Romero⁽¹⁾ and L. Shaffrey⁽²⁾ ⁽¹⁾Universitat de les Illes Balears (Spain), ⁽²⁾University of Reading (United Kingdom)

Fig.1. Infrared satellite images of medicane events in June 1995 (left) and November 2011 (right).

Medicanes are rare cyclones which develop over the Medirraneanean sea with similar development (based on the thermodynamical disequilibrium between the cold air and the warm sea) and properties (intense vortex with a warm core) to tropical cyclones. Although their size is smaller (with a maximum diameter usually not exceding 300 km) and they attain less intensity than tropical cyclones, the severity of the associated winds can cause substantial damage on islands and coastal areas.

The improvement of the resolution is specially relevant in areas with complex orography and where small disturbances are frequent, like the Mediterranean basin.

	Max. Vorticity centers	Min. Pressure centers	Number of cyclones	Medicane cyclone track	Number of medicanes
1985-2011	345 479	147 441	45 013	826	65
2085-2111	336 954	145 275	44 291	716	44

Table 1. Total number of events counted by this objective tracking

Medicane events are reduced in the future scenario and their maximum wind speed is slightly greater than in the present one.

Medicanes become more concentrated in the corridor between the Gulf of Genoa and south of Sicily. Wind speeds become also larger in future medicane-genesis areas, which would represent an enhanced risk not only in terms of the number of storms but also in the occurrence of high intensity events.

Fig.4. Spatial distribution of medicanes in present and future climate conditions as function of maximum surface wind speed (Beaufort scale). Contours every 10 cyclone centers per century in an area 2°x2°.

Data:

Model: HadGEM3 N512 Dates: June 1985 – May 2011 (present) June 2085 – May 2111 (future)

Fig.2. Land-sea view using different resolutions, comparing a standard IPCC class (N96, aprox. 130km) and the high resolution (N512, aprox. 25 km) of HadGEM3 simulations.

Interest and concern about how climate change will affect extreme events are both increasing, including possible changes on the frequency and intensity of **medicanes**. Most global climate models do not have high enough resolution to represent these storms, but in this study we circumvent this problem and develop a medicane risk assessment while avoiding the use of downscaling techniques.

Cyclone tracking:

Based on Hodges (1994) Filtered T40-T100 Vorticity centers > $2 \cdot 10^{-5} \text{ s}^{-1}$ Lifetime \geq 12 h

a detected cyclone related to a medicane event.

This is an example of how HadGEM3 N512 represents a medicane. An **isolated intense** cyclone with a warm core is observed over the Balearic Sea. Abrupt drop in mslp and severe winds (in this case, over 20m/s) are also some of the medicane characteristics.

Bibl: Hodges, K., 1994. A general method for tracking analysis and its application to meteorological data. Mon.Weather Rev. 122, 2573-2586. Acknowledgements: Projects MEDICANES (CGL2008-01271) and PREDIMED (CGL2011-24458) from the Spanish Ministerio de Educación This work has also been partially funded by the Government of the Balearic Islands through the project 7/2011 of the Conselleria d'Educació, Cultura i Universitats.

Medicane requirements:

Dist. max.vort – Dist. mslp \leq 200km Warm core: T_{R50} - $T_{R200} \ge 1.5^{\circ}C$ High relative humidity: $h_{R100} \ge 70\%$ Position: Mostly sea life

Fig.3. On top, temperature at 850 hPa (°C, shaded contours) and mslp (hPa, continuous contours) for a medicane. On bottom, mslp (hPa, black dots) and maximum surface wind speed (m/s, white dots) during

