www.uib.cat

A neural network designed to predict meteotsunamis in **Ciutadella harbour**

M.Vich and R. Romero

8th International Conference on Meteorology and Climatology of the Mediterranean (MetMed)

Geographic context

wave heights \cong **1 m**

Motivation

several episodes in modern history have reached **2-4 m**

/ Investigadors / Catàleg de serveis R+D+I / Energia, medi ambient i gestió del territori
/ Assessorament sobre la predicció i els impactes de les rissagues a Ciutadella i altres ports de les illes Balears

Background

TRAM_non_hydro_set1_2D_oroSTRETCH_implicit

> "Rissaga" Study

(dx=250m, dzm=250m, stretch=5, dt=0.75s, Nstep=10, 24h)

https://meteo.uib.es/rissaga/

Background

GFS soundings

for daily running

Background

Neural networks

Neural networks

Our neural network setup

Database

Training (75%) – Test (25%)

• 126 rissaga days

Extending heterogeneously from July 1981 to July 2018 (plus one old case from September 1975).

• 549 non-rissaga days

Quasi-continuous record from December 2016 to July 2018. After filtering out a dozen of rissaga days happened in period and discarding those days without thermodynamic soundings available.

Our neural network setup

Database Training (75%) – Test (25%)

M. Vich mar.vich@uib.es

Our neural network setup

- Rprop+, Resilient backpropagation with weight backtracking, is the algorithm used to calculate the NN
- The logistic function is used as activation function a characteristic S-shaped curve

Our neural network setup

Design

Dry NN scheme

Results

Results

Performance statistics

	OBS mean (cm)	SIM mean (cm)	RMSE (cm)	CC
Dry NN	39.2	36.7	44.2	0.307
Wet NN	39.2	33.4	44.3	0.315
TRAM-rissaga	37.0	42.8	45.4	0.431

Database NN Training (75%) – Test (25%)

Database TRAM-rissaga Training (0%) – Test (100%)

Results Deterministic verification

	Observed			
	Yes	No	Total	
Forecast				
Yes	Hit	False alarm	Forecast yes	
No	Miss	Correct rejection	Forecast no	
Total	Observed yes	Observed no	Total	

Scale	Category	Wave height (cm)
Dichotomous	Non-rissaga	< 70
	Rissaga	≥ 70
Expanded	Small oscillations	< 20
	Moderate oscillations	∈ [20, 70)
	Ordinary rissaga	∈[70, 100)
	Intense rissaga	∈ [100, 200)
	Extreme rissaga	≥ 200

Rissaga Categories

Rissaga Categories

Rissaga Categories

Conclusions

- The NNs results show a skill comparable to that of TRAM-rissaga (coupled ocean-atmosphere simulations) at a cheaper computational cost
- The verification results show a limited improvement of the wet scheme over the dry scheme. This fact is tied to the training database limited size
- The results do confirm the potential of a NN approach to implement an operational rissaga NN forecasting system

A neural network designed to predict meteotsunamis in Ciutadella harbour

M.Vich and R. Romero

University of the Balearic Islands

8th International Conference on Meteorology and Climatology of the Mediterranean (MetMed)

May, 25 - 27, 2021

Natural Hazards https://doi.org/10.1007/s11069-020-04041-5

ORIGINAL PAPER

Forecasting meteotsunamis with neural networks: the case of Ciutadella harbour (Balearic Islands)

Maria-del-Mar Vich¹ · Romualdo Romero¹

Received: 1 December 2019 / Accepted: 29 April 2020

Our neural network setup

Algorithm type to calculate the neural network (NN)

Rprop+

Resilient backpropagation with weight backtracking

- First order minimizing algorithms a general method for gradient based optimization.
- Particularly used for the optimization the weights of Artificial Neural Networks due to its **faster convergence**.
- Takes into account only the sign of the partial derivative over all patterns (not the magnitude) to indicate the direction of the weight update, and acts independently on each "weight".
- Weight backtracking means retracting a previous weight update for some or all weights. Whether to take back a step or not is decided by means of a heuristic.

Our neural network setup

Algorithm type to calculate the neural network (NN)

Rprop+

Resilient backpropagation with weight backtracking

The gradient direction changes when jumping over optima

M. Vich mar.vich@uib.es Our neural network setup

Activation functions

- Determine the output of a neural network and each individual neuron.
- Help normalize the output of each neuron to a range between 1 and 0 or between -1 and 1.

Our neural network setup

Design

NNs inputs: GFS soundings

Dry NN scheme

Wet NN scheme

Our neural network setup

Design

