

A Computationally Cheap Atmosphere-Ocean Modelling System Aimed At Anticipating METEOTSUNAMI Occurrence in CIUTADELLA Harbour

<u>Romu Romero</u> M. Mar Vich C. Ramis

7th METMED Conference

Palma de Mallorca (SPAIN), March 4-6 2019

RISSAGA Phenomenon

15 June 2006

Šepić et al. (2015)

1. ATMOSPHERIC Component (Balearic Islands)

> 2D version of Euler equations (dry-adiabatic) $\frac{\partial \pi'}{\partial t} = -u \frac{\partial \pi'}{\partial x} - w \frac{\partial \pi'}{\partial z} - w \frac{\partial \overline{\pi}}{\partial z} - \frac{R}{c_v} (\overline{\pi} + \pi') \left[\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right]$ $\frac{\partial \theta'}{\partial t} = -u \frac{\partial \theta'}{\partial x} - w \frac{\partial \theta'}{\partial z} - w \frac{\partial \overline{\theta}}{\partial z}$ $\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - c_p (\overline{\theta} + \theta') \frac{\partial \pi'}{\partial x}$ NO rotation NO physics, etc ... $\frac{\partial w}{\partial t} = -u \frac{\partial w}{\partial x} - w \frac{\partial w}{\partial z} - c_p (\overline{\theta} + \theta') \frac{\partial \pi'}{\partial z} + g \frac{\theta'}{\overline{\theta}}$

> Numerical implementation [CFL $\xrightarrow{c_s > 300 m/s} \Delta t \approx 3 \Delta x (\Delta z)$]

- * Forward-Backward integration of "forcings" in RK2 cycle
- * REA (V and H) integration of advection every 6-10 Nsteps
- * Stabilized acoustic vertical modes (Implicit Scheme)

VALIDATION Tests

Large Warm & Small Cold Bubble

T-REX Intense Mountain-Wave

Schär Mountain

GRAVITY WAVE Generation & Progagation

GRAVITY WAVE Generation & Progagation

2. OCEANIC Component (MALLORCA-MENORCA Channel)

> Shallow-Water equations

$$\frac{\partial h}{\partial t} = -u \frac{\partial h}{\partial x} - h \frac{\partial u}{\partial x}$$
$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - g \frac{\partial h}{\partial x} - \frac{1}{\rho} \frac{\partial P}{\partial x} - \frac{g u^2}{h C^2}$$

Partial Dam Break 10-5 m

LONG OCEAN WAVES (Proudman Resonance & Wave Shoaling)

3. COASTAL Component (CIUTADELLA Inlet)

> Shallow-Water equations

$$\frac{\partial h}{\partial t} = -u \frac{\partial h}{\partial x} - h \frac{\partial u}{\partial x}$$
$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - g \frac{\partial h}{\partial x} - \frac{g u^2}{h C^2}$$

Gaussian Bump in 10 m

RISSAGA (Harbour Resonance)

RISSAGA (GLOBAL Results)

RISSAGA (CATEGORIES of Practical Interest)

What fraction of the events are (are not) correctly forecast ??? What fraction of the forecasts are (are not) correct ???

> A PRAGMATIC (and computationally CHEAP) numerical APPROACH aimed at PREDICTING the occurrence and magnitude of meteotsunamis in Ciutadella (RISSAGAS): SKILL for the recognition of RISK situations and for a categorization among WEAK, MODERATE and INTENSE

> SOME ISSUES to explore: Sounding representativity; Type and amount of GW triggering; Inclusion of moist physics (MCS); Second-order oceanic influences...

> The system could be applied as a DOWNSCALING METHOD to assess quantitatively the future risk of rissagas

> It is now in operation, running daily driven by GFS
forecast soundings for the next 3 days and providing
PROBABILISTIC PREDICTIONS: <u>http://meteo.uib.es/rissaga</u>

<u>THANK YOU</u> <u>for</u> <u>your attention</u>