Comparison of several Ensemble Prediction Systems applied to Mediterranean high impact cyclones associated with heavy rainfall and strong winds

Maria-del-Mar Vich^{1*} Romualdo Romero¹ Victor Homar¹ Harold Brooks²

¹Meteorology Group, Universitat de les Illes Balears, Palma de Mallorca, Spain

²NOAA - National Severe Storm Laboratory, Norman, Oklahoma, United States

*(mar.vich@uib.es)

ECSS 2009

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	000000	

Outline

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Methodolog

Comparison

Conclusions

Introduction

The western Mediterranean area


Very cyclogenetic

• High impact weather phenomena

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Improve the numerical forecasts of cyclones

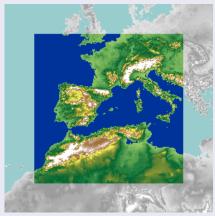
• Ensemble prediction system

- Perturbed initial and boundary conditions
- Multiphysics
- Multi-model

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction
000000


Methodolog

Comparison

Conclusions

Introduction

Mesoscale Atmospheric Model: MM5

- Nonhydrostatic dynamics
- High resolution
- Lateral boundary conditions
- Vertical coordinate: σ

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction 000000	Methodol 0000		Comparison 000000	Conclusions 00
Introduction				
	Ν	MM5 adjoint mo	del	
	$x'_{in} \rightarrow$	Forecast	$\rightarrow x'_{out}$	

Model

Adjoint Model

• X: meteorological fields

 $\frac{\partial R}{\partial x_{\rm in}} \leftarrow$

• R: Response function

 $-\frac{\partial R}{\partial x_{out}}$

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction 0000●0		Methodology DOOO		Comparison 000000	Conclusion 00	
Introdu	uction					
	V	'erificatior	n: Gene	ral framework		
	- Forecast - -	Ot Ye Yes a No c	served s No b d	Contingency (2x2 probl		
Basic	c Descriptive St	tatistics		Performance Me	easures	
(Base	$R_{Rate} = \frac{1}{a+a}$ e: [0,1]	$\frac{a+c}{b+c+c}$	Ī	POD (Probability of Detection) POFD (Probability of False Detect	$= \frac{a}{a+c}$ $= \frac{b}{b+d}$	
				Range: [0,1] Per	fect Score: 1	

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction
000000

Objectives

- Develop several ensemble prediction systems applied to Mediterranean high impact cyclones associated with heavy rain
 - Multiphysics
 - (different combinations of model physical parameterizations)
 - PV-perturbed

(initial and boundary conditions through three-dimensional PV structure) subjectively

with the most intense values and gradients PV zones objectively

with the MM5 adjoint model calculated sensitivity zones

• Compare the performance of the EPSs for the 24h accumulated precipitation field (30-54 h simulation time)

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction
000000

Objectives

- Develop several ensemble prediction systems applied to Mediterranean high impact cyclones associated with heavy rain
 - Multiphysics (different combinations of model physical parameterizations)
 - PV-perturbed

(initial and boundary conditions through three-dimensional PV structure)

subjectively

with the most intense values and gradients PV zones

objectivel

with the MM5 adjoint model calculated sensitivity zones

• Compare the performance of the EPSs for the 24h accumulated precipitation field (30-54 h simulation time)

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction
000000

Objectives

- Develop several ensemble prediction systems applied to Mediterranean high impact cyclones associated with heavy rain
 - Multiphysics (different combinations of model physical parameterizations)
 - PV-perturbed

(initial and boundary conditions through three-dimensional PV structure)

- subjectively
 - with the most intense values and gradients PV zones
- objectively

with the MM5 adjoint model calculated sensitivity zones

• Compare the performance of the EPSs for the 24h accumulated precipitation field (30-54 h simulation time)

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Methodology •000 Comparison

Methodology

Build the Multiphysics Ensemble Forecasts

Different combinations of MM5 physics parameterization

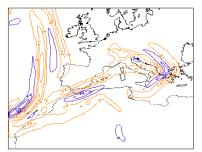
12 members + control member

- Explicit Moisture Schemes
 - 6 (Goddard microphysics)
 - 7 (Reisner graupel)
 - 8 (Schultz microphysics)
- Cumulus Parameterizations
 - 3 (Grell)
 - 6 (Kain-Fritsch)
- PBL Schemes
 - 4 (Eta)
 - 5 (MRF)

634, 635, 664, 665, 734, 735, 764, 765, 834, 835, 864, 865, 785 (control)

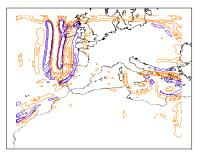
M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain


Introduction	Methodology	Comparison	Conclusions
000000	○●○○	000000	

Methodology

Build the two PV-perturbed Ensemble Forecasts


Introduce realistic perturbations randomly to the PV fields through a PV error climatology along the three-dimensional PV structure

Objectively:

MM5 adjoint model calculated sensitivity zones at 300 hPa

Subjectively:

The most intense values and gradients PV zones at 300 hPa

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Methodology

Comparison

Methodology

Simulations Characteristics

- Domain characteristics:
 - Resolution: 22.5 km
 - Center: 39.8 lat and 2.4 lon
 - Area: 120x120 grid

- Forecasting period is 54 h to simplify the posterior verification process (rainfall data is available at 24 h intervals starting each day at 06 UTC).
- The ensemble trial period corresponds to a collection of 19 MEDEX cyclones comprising 56 different simulation periods.

MEDEX: Mediterranean Experiment on Cyclones that produce High Impact Weather in the Mediterranean

M. Vich (mar.vich@uib.es)

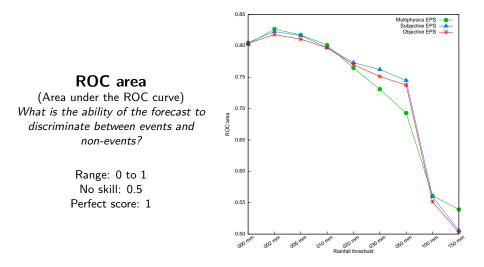
Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	000●	000000	00

Methodology

Available Observations

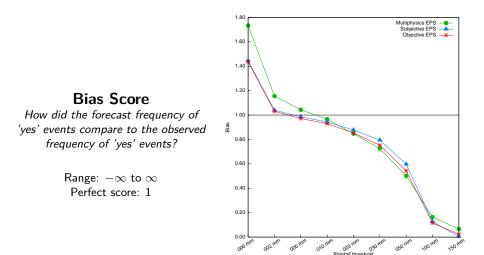
The forecasted gridded field is interpolated over the rain gauges to compare with the observed data


Rain gauge data is provided by AEMET (Spanish MetOffice)

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

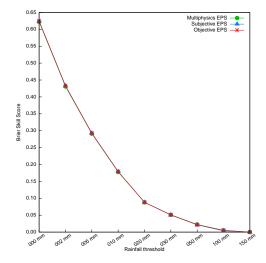
Introduction	Methodology	Comparison	Conclusions
000000	0000	●00000	



M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	○●○○○○	00
Comparison			



M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	00●000	

Comparison

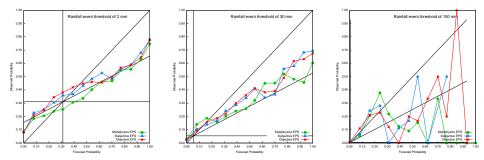
Brier Skill Score

What is the relative skill of the probability forecast over that of climatology, in terms of predicting whether or not an event occurred?

> Range: $-\infty$ to 1 Perfect score: 1

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

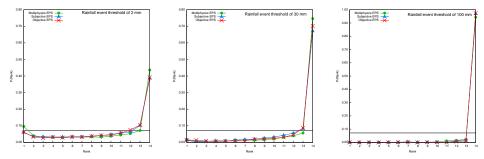

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	0000●0	00
Comparison			

Attribute Diagram

How well do the predicted probabilities of an event correspond to their observed frequencies?


M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	00000●	00
Comparison			

Rank Histogram

How well does the ensemble spread of the forecast represent the true variability (uncertainty) of the observations?

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Introduction	Methodology	Comparison	Conclusions
000000	0000	000000	●0
Conclusions			

It's hard to verify extreme events and precipitation due to the small statistically significance, and the characteristics of the rainfall, like the spatial distribution. In spite of all this:

- The three ensembles have a good performance
- PV-perturbed performes better than Multiphysics
- Subjective PV-perturbed performes better than Objective

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Conclusions

In the future:

• Design a new set of PV-perturbed ensembles based on

- PV modification technique guided by satelite water vapor observations (Dermitas and Thorpe, 1999)
- MIMOSA a high resolution advection model of PV developed at Service d'Aeronomie, France
- Compare this new set with the current Objective and Subjective ensembles

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain

Thank you for your attention!

M. Vich (mar.vich@uib.es)

Universitat de les Illes Balears - Spain