

CONTROL NUMERICAL SIMULATION

- * PSU-NCAR mesoscale model (non-hydrostatic version MM5)
- * Simulation:
 - 2 domains: 82x82x31 (60 and 20 km)
 - Interaction: two-way
 - I.C and B.C: NCEP global analysis + Surface and Upper air obs.
 - Period: 48 h, from 00 UTC 28 September 1994
- * Physical parameterizations:
 - PBL: Based on Blackadar (1979) scheme (Zhang and Anthes 1982)
 - Ground temperature: Force-restore slab model (Blackadar 1979)
 - Radiation fluxes: Considering cloud cover (Benjamin 1983)
 - Resolved-scale microphysics: Cloud water, rainwater, cloud ice and snow (Dudhia 1989)
 - Parameterized convection: 60 km: Betts-Miller (1986) 20 km: Kain-Fritsh (1990)

SENSITIVITY TO THE UPPER LEVEL PV ANOMALIES (motivation)

* The two embedded upper-level PV centres seem to be playing an important role for the evolution, intensity and areal extent of the surface cyclone

* How a potential analysis and/or forecast error in the representation of these PV anomalies might affect the mesoscale forecast ?

- * Sensitivity analysis based on additional simulations with perturbed initial conditions
- * A balanced flow associated with each anomaly must be found that can be used to alter the model initial conditions in a physically consistent way without introducing any significant noise in the model — Piecewise PV inversion

SENSITIVITY EXPERIMENTS

By adding and/or subtracting the PV-inverted balanced fields (geopotential, temperature and wind) into the model initial conditions

Sensitivity to the intensity (One or both PV anomalies removed or doubled)

Experiment	SW anomaly	NE anomaly
S_0^0	Removed	Removed
S_{2}^{2}	Doubled	Doubled
S_1^0	Unchanged	Removed
S_{2}^{0}	Doubled	Removed
S_0^1	Removed	Unchanged
S_{0}^{2}	Removed	Doubled
S_2^1	Doubled	Unchanged
S_1^2	Unchanged	Doubled

(One of both I V anomanes sinted 425 kin along R-D)			
Experiment	SW anomaly	NE anomaly	
<i>S</i>	Moved inwards	Moved inwards	
S_{+}^{+}	Moved outwards	Moved outwards	
$S_{=}^{-}$	Unchanged	Moved inwards	
S_+	Moved outwards	Moved inwards	
$S_{-}^{=}$	Moved inwards	Unchanged	
S_{-}^{+}	Moved inwards	Moved outwards	
$S_{+}^{=}$	Moved outwards	Unchanged	
$S^+_{=}$	Unchanged	Moved outwards	

Sensitivity to the position

* The combined application of piecewise PV inversion + numerical simulation offers a valuable framework from which the effects of dynamical features of the flow can be studied