

	MOTIVATION
> WHY NOT our own model ? (e.g. <u>GLOBO-BOLAM</u> -	-MOLOCH)
> Mostly for RESEARCH and ACADEMIC purposes, potentially for "FORECASTING" as well	but
> Aimed at MESOSCALE applications and IDEALI experiments(high resolution and regional cor although naturally suited to SYNOPTIC scale	ZED ntexts),
> The new numerical model must necessarily i ORIGINAL aspects and pass some benchmark TES	Involve STS

Semi-Implicit Scheme
<pre>> Stabilization of acoustic vertical modes (RK2-cycle)</pre>
$\frac{\partial \pi'}{\partial t} = F^n + G^n \left[\alpha \frac{\partial w^n}{\partial z} + \beta \frac{\partial w^{n+1}}{\partial z} \right] \longrightarrow \pi'^{n+1} = A + B \frac{\partial w^{n+1}}{\partial z}$
$\frac{\partial w}{\partial t} = R^n + T^n \left[\alpha \frac{\partial {\pi'}^n}{\partial z} + \beta \frac{\partial {\pi'}^{n+1}}{\partial z} \right] \longrightarrow \qquad w^{n+1} = C + D \frac{\partial {\pi'}^{n+1}}{\partial z}$
$\alpha = 0.3 \qquad \beta = 0.7$
Off-centered 🛛 🖌
$w^{n+1} = C + DA_z + DB_z \frac{\partial w^{n+1}}{\partial z} + DB \frac{\partial^2 w^{n+1}}{\partial z^2}$
$aw_{k-1}^{n+1} + bw_k^{n+1} + cw_{k+1}^{n+1} = f \xrightarrow{Tridiagonal \ solver} \begin{cases} w^{n+1} \\ \pi'^{n+1} \xrightarrow{F-B} \\ u^{n+1}, v^{n+1} \end{cases}$
> Additional optimizations [CFL $\xrightarrow{c_s > 300 m/s} \Delta t \approx 2 \Delta x (\Delta z)$]
* Vertical diffusion implicit (BTCS/CN)
* Slow terms and θ' in Nsteps-cycle * Flexible REA-V

CONCLUSIONS

> NEW MODEL achieved (at present just dynamical core) SUITABLE to simulate processes ranging from small-scale thermal bubbles (≈ 10 m) to synoptic-scale baroclinic ciclones (≈ 1000 km), including orographic circulations

> MAIN CHARACTERISTICS: Advection form under REA approach (mass & energy not strictly conserved); Fully compressible & Non hydrostatic; Time-splitting strategy; Vertically semi-implicit; Triangle-based horizontal mesh (no staggering); Z-coordinate (no staggeging) allowing arbitrary stretching (proper treatment of slopes and bottom BCs); Lambert projection with all Coriolis and curvature terms retained; No explicit filters needed

> A variety of comparison tests showed that TRAM PERFORMS AT LEAST AS WELL as state-of-the-art models

> THANK YOU for your attention